63 research outputs found

    Enhanced microwave imaging of the subsurface for humanitarian demining applications

    Get PDF
    © Cranfield University 2020. All rights reserved. No part of this publication may be reproduced without the written permission of the copyright ownerThis thesis presents a theoretical analysis and applied evaluation deploying ground penetrating radar (GPR) for landmine detection. An original contribution has been made in designing and manufacturing a light-weight, low-cost, fully polarimetric antenna system for GPR, enabling easy transportation and assembly. This facilitates extensive use by various smaller communities in remote areas. By achieving the goal of supplying various smaller communities with advanced ground penetrating radar technology the technological standard of landmine detection can be improved beyond existing solutions such as metal detection or manual probing. The novel radar system itself allows detection of various subsurface targets of different shapes and sizes, metallic and non-metallic, in a number of different soils, such as sand, loam or gravel and therefore can be used in versatile environments. The GPR system has been realised by designing novel light-weight, 3D printed X-band horn antennas, manufactured from single piece plastic then copper electroplated. These antennas are 50% lighter than their commercial equivalents. They are incorporated in an antenna array as a group of four to allow full-polarimetric imaging of the subsurface. High resolution images of landmines and calibration targets were performed in the subsurface over an experimental sand test bed. For performing subsurface measurements in the near-field, four novel gradient-index (GRIN) lenses were designed and 3D printed to be incorporated in the apertures of the Xband antennas. The improved target detection from these lenses was proven by scanning the test bed and comparing the imaging data of the antenna array with and without lensesattached. A rigorous theoretical study of different decomposition techniques and their effect on the imaging and detection accuracy for polarimetric surface penetrating data was performed and applied to the gathered imaging data to reliably isolate and detect subsurface targets. Studied decomposition techniques were Pauli decomposition parameters and Yamaguchi polarimetry decomposition. It was found that it is paramount to use both algorithms on one set of subsurface data to detect all features of a buried target. A novel temporal imaging technique was developed for exploiting natural occurring changes in soil moisture level, and hence its dielectric properties. Contrary to the previously introduced imaging techniques this moisture change detection (MCD) mechanism does not rely on knowledge of the used measurement setup or deploying clutter suppression techniques. This time averaged technique uses several images of a moist subsurface taken over a period while the moisture evaporates from the soil. Each image pixel is weighted by the phase change occurring over the evaporation period and a resulting B-scan image reveals the subsurface targets without surrounding clutter. Finally, a multi-static antenna set-up is examined on its capability for suppressing surface clutter and its limitations are verified by introducing artificial surface clutter in form of pebbles to the scene. The resulting technique was found to suppress up to 30 The GPR antenna system developed in this thesis and the corresponding imaging techniques have contributed to a significant improvement in subsurface radar imaging performance and target discrimination capabilities. This work will contribute to more efficient landmine clearance in some of the most challenged parts of the world

    Fabrication procedure and performance of 3D printed X-band horn antenna

    Get PDF
    This paper presents the design, fabrication and performance of fusion deposition modeled 3D printed X-band horn antennas. The WR90 waveguide feed and pyramidal horn flare are printed as one piece from Acrylonitrile Butadiene Styrene (ABS). Different metallisation techniques are assessed to provide a uniform 40 micron coat on the ABS surfaces. Uniquely, the coaxial waveguide launcher is integrated with the waveguide section in a single interference fit operation. The measured and simulated radiation patterns showed good correlation and the antenna return loss was ≤−10dB over the 8.212.4GHz operating range. The measured and simulated antenna gain was in good agreement and increased monotonically from 10–17 ± 1.0dBi across the operating frequency

    Near-field microwave imaging using a polarimetric array of 3D printed antennas and lenses

    Get PDF
    A novel near-field microwave imaging system was designed and fabricated using the three-dimensional (3D) printing technique to manufacture X-band Pyramidal horn antennas and planar graded-index (GRIN) lenses. The flat lens focusing profile is synthesised by varying the refractive index radially in incremental steps that adjust the air-dielectric mixture. The lens is designed for direct attachment to the antenna aperture and transforms spherical waves emanating from antenna phase center into plane radiating waves. Simulated and measurement results show the antenna lens system input impedance is ≤ -10 dB, radiation pattern gain is between 17-20dBi over the 8.2-12.4GHz frequency band and when arrayed for polarimetry sensing has a polarisation cross-talk of ≤-50 dB. A ground penetrating radar system using the nearfield array was scanned over buried targets. The SAR results demonstrated high resolution and polarisation discrimination imagery capable of detecting subsurface objects

    Novel aspects of age-protection by spermidine supplementation are associated with preserved telomere length

    Get PDF
    Ageing provokes a plethora of molecular, cellular and physiological deteriorations, including heart failure, neurodegeneration, metabolic maladaptation, telomere attrition and hair loss. Interestingly, on the molecular level, the capacity to induce autophagy, a cellular recycling and cleaning process, declines with age across a large spectrum of model organisms and is thought to be responsible for a subset of age-induced changes. Here, we show that a 6-month administration of the natural autophagy inducer spermidine in the drinking water to aged mice is sufficient to significantly attenuate distinct age-associated phenotypes. These include modulation of brain glucose metabolism, suppression of distinct cardiac inflammation parameters, decreased number of pathological sights in kidney and liver and decrease of age-induced hair loss. Interestingly, spermidine-mediated age protection was associated with decreased telomere attrition, arguing in favour of a novel cellular mechanism behind the anti-ageing effects of spermidine administration

    Recent acquisition of Helicobacter pylori by Baka Pygmies

    Get PDF
    Both anatomically modern humans and the gastric pathogen Helicobacter pylori originated in Africa, and both species have been associated for at least 100,000 years. Seven geographically distinct H. pylori populations exist, three of which are indigenous to Africa: hpAfrica1, hpAfrica2, and hpNEAfrica. The oldest and most divergent population, hpAfrica2, evolved within San hunter-gatherers, who represent one of the deepest branches of the human population tree. Anticipating the presence of ancient H. pylori lineages within all hunter-gatherer populations, we investigated the prevalence and population structure of H. pylori within Baka Pygmies in Cameroon. Gastric biopsies were obtained by esophagogastroduodenoscopy from 77 Baka from two geographically separated populations, and from 101 non-Baka individuals from neighboring agriculturalist populations, and subsequently cultured for H. pylori. Unexpectedly, Baka Pygmies showed a significantly lower H. pylori infection rate (20.8%) than non-Baka (80.2%). We generated multilocus haplotypes for each H. pylori isolate by DNA sequencing, but were not able to identify Baka-specific lineages, and most isolates in our sample were assigned to hpNEAfrica or hpAfrica1. The population hpNEAfrica, a marker for the expansion of the Nilo-Saharan language family, was divided into East African and Central West African subpopulations. Similarly, a new hpAfrica1 subpopulation, identified mainly among Cameroonians, supports eastern and western expansions of Bantu languages. An age-structured transmission model shows that the low H. pylori prevalence among Baka Pygmies is achievable within the timeframe of a few hundred years and suggests that demographic factors such as small population size and unusually low life expectancy can lead to the eradication of H. pylori from individual human populations. The Baka were thus either H. pylori-free or lost their ancient lineages during past demographic fluctuations. Using coalescent simulations and phylogenetic inference, we show that Baka almost certainly acquired their extant H. pylori through secondary contact with their agriculturalist neighbors

    In vivo measures of cartilage deformation: patterns in healthy and osteoarthritic female knees using 3T MR imaging

    Get PDF
    ObjectiveTo explore and to compare the magnitude and spatial pattern of in vivo femorotibial cartilage deformation in healthy and in osteoarthritic (OA) knees.MethodsOne knee each in 30 women (age: 55 ± 6 years; BMI: 28 ± 2.4 kg/m(2); 11 healthy and 19 with radiographic femorotibial OA) was examined at 3Tesla using a coronal fat-suppressed gradient echo SPGR sequence. Regional and subregional femorotibial cartilage thickness was determined under unloaded and loaded conditions, with 50% body weight being applied to the knee in 20° knee flexion during imaging.ResultsCartilage became significantly (p < 0.05) thinner during loading in the medial tibia (-2.7%), the weight-bearing medial femur (-4.1%) and in the lateral tibia (-1.8%), but not in the lateral femur (+0.1%). The magnitude of deformation in the medial tibia and femur tended to be greater in osteoarthritic knees than in healthy knees. The subregional pattern of cartilage deformation was similar for the different stages of radiographic OA.ConclusionOsteoarthritic cartilage tended to display greater deformation upon loading than healthy cartilage, suggesting that knee OA affects the mechanical properties of cartilage. The pattern of in vivo deformation indicated that cartilage loss in OA progression is mechanically driven

    Age of the Association between Helicobacter pylori and Man

    Get PDF
    When modern humans left Africa ca. 60,000 years ago (60 kya), they were already infected with Helicobacter pylori, and these bacteria have subsequently diversified in parallel with their human hosts. But how long were humans infected by H. pylori prior to the out-of-Africa event? Did this co-evolution predate the emergence of modern humans, spanning the species divide? To answer these questions, we investigated the diversity of H. pylori in Africa, where both humans and H. pylori originated. Three distinct H. pylori populations are native to Africa: hpNEAfrica in Afro-Asiatic and Nilo-Saharan speakers, hpAfrica1 in Niger-Congo speakers and hpAfrica2 in South Africa. Rather than representing a sustained co-evolution over millions of years, we find that the coalescent for all H. pylori plus its closest relative H. acinonychis dates to 88–116 kya. At that time the phylogeny split into two primary super-lineages, one of which is associated with the former hunter-gatherers in southern Africa known as the San. H. acinonychis, which infects large felines, resulted from a later host jump from the San, 43–56 kya. These dating estimates, together with striking phylogenetic and quantitative human-bacterial similarities show that H. pylori is approximately as old as are anatomically modern humans. They also suggest that H. pylori may have been acquired via a single host jump from an unknown, non-human host. We also find evidence for a second Out of Africa migration in the last 52,000 years, because hpEurope is a hybrid population between hpAsia2 and hpNEAfrica, the latter of which arose in northeast Africa 36–52 kya, after the Out of Africa migrations around 60 kya

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Effective polarization filtering techniques for ground penetrating radar applications

    Get PDF
    The effect of different decomposition techniques on the imaging and detection accuracy for polarimetric surface penetrating radar data is studied. We derive the general expressions for coherent polarimetric decomposition using the Stokes parameters and model based polarimetric decomposition using the Yamaguchi technique. These techniques are applied to multi-frequency (0.4-4.8GHz) full polarimetric near-field radar measurements of scattering from surface laid calibration objects and shallow buried landmine types and show in detail how the decomposition results provide effective surface and sub-surface clutter reduction and guide the interpretation of scattering from subsurface objects. Data processing methods assume cross-polar symmetry and a novel bistatic calibration procedure was developed to enforce this condition. The Yamaguchi polarimetric decomposition provides significant clutter reduction and image contrast with some loss in signal power; while Stokes parameters also provide imagery localising targets, complementary information on the scattering mechanism is also obtained. Finally a third novel polarimetric filter was formulated based on differential interferometric polarimetric decomposition. The three combined techniques contribute to a significant improvement of subsurface radar performance and detection image contrast

    Comparison of performance of polarimetric decomposition techniques to suppress subsurface clutter in GPR applications

    No full text
    The effect of different decomposition techniques on the imaging and detection accuracy for polarimetric surface penetrating radar data is studied. We derive the general expressions for coherent polarimetric decomposition using the model based polarimetric decomposition of Yamaguchi technique and compare these with some Stokes and Pauli coherent polarisation decomposition parameters. These mathematical treatments are then applied to laboratory based X-band (8.2-12.4GHz) full polarimetry near-field radar measurements taken of shallow buried reference and calibration objects and different landmine types. The Yamaguchi polarimetry filters demonstated significant surface and sub-surface clutter reduction and contrast in subsurface imagery, with some loss in signal power. The Stokes and Pauli parameters demonstrated similar clutter reduction in subsurface imagery providing additional beneficial information on the targets scattering mechanism. Combining these techniques contributes to an improvement of subsurface radar discrimination and understanding of the target type
    corecore